Exercises for Stochastic Processes

Tutorial exercises:

- T1. Let $T \subseteq \mathbb{R}$. Show that a stochastic process $\mathbb{X} := (X_t)_{t \in T}$ on (Ω, \mathcal{F}) with values in S^T is $\mathcal{F} \mathcal{S}^T$ -measurable if and only if all projections X_t are $\mathcal{F} \mathcal{S}$ -measurable. (\mathcal{S} denotes a σ -algebra on S.)
- T2. Let $(X_t)_{t\in\mathbb{R}}$ be a real-valued $\mathcal{F}-\mathcal{B}^{\mathbb{R}}$ -measurable stochastic process with continuous paths. Show that $\sup_{t\in\mathbb{R}} X_t$ is measurable.
- T3. Let τ_1, τ_2, \ldots be independent and exponentially distributed with parameter $\lambda > 0$. Define

$$N_t := |\{k \ge 1 \mid \tau_1 + \dots + \tau_k \le t\}|$$
.

Show that, if 0 < s < t, then N_s and $N_t - N_s$ are independently Poisson distributed with parameters λs and $\lambda (t - s)$.

Homework exercises:

H1. (a) Let (S, \mathcal{S}) be a measurable space. Show that, for uncountable $T \subset \mathbb{R}$,

$$\mathcal{S}^{T} = \left\{ \left\{ f \in S^{T} \mid (f(t_{1}), f(t_{2}), \dots) \in A \right\} \mid t_{1}, t_{2}, \dots \in T, A \in \mathcal{S}^{\left\{t_{1}, t_{2}, \dots\right\}} \right\}.$$

("All sets in the product σ -algebra are countably determined.")

- (b) Conclude that the set of all continuous functions on $T \subset \mathbb{R}$ is no (product-)measurable subset of \mathbb{R}^T .
- H2. Deduce Kolmogorov's continuity criterion (Theorem 2.1 in the lecture) from Theorem 2.2.
- H3. Under which (necessary and sufficient) condition does an i.i.d. family $(X_t)_{t\in\mathbb{R}}$ have a continuous modification?

Deadline: Monday, 21.10.19